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ABSTRACT: A way of taking the effects of unsteady motion into con-
sideration in bourdary layer theory has been found recently [1]. In
the meantime, in hydraulics ever-increasing interest is being shown
in the application of the ideas and methods of boundary layer theory
to the study channel flows. We have attempted here 1o apply this
hydrodynamic approach in deriving the law of resistance for turbulent
unsteady flows in open channels.

§1. DERIVATION OF THE SYSTEM OF EQUATIONS

We shall consider plane nonstationary flows of a viscous in-

compressible fluid described by the Navier- Stokes system of equations.

We carry out the well-known transformation

t= (U/X)to» z= Xz, y= Yo

u= Uuy, v="Vu, p=plip,y,
Then this system of equations takes the dimensionless form
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Here we have taken the notation usually employed in hydrody-

namics: t is time; (x, y) the Cartesian coordinate system, the x axis is'

directed along a fixed rectilinear contour; u, v are the respective
velocity components along the x and y axes; p is the pressure;

p and v are the density and the kinematic viscosity coefficient of
the fluid, respectively; Fy, F are the components of the body
force: and X, Y, U, V are the scales of lengths and velocity com-
ponents,

We impose a first constraint on the flow. The Reynolds number
R =UX /v is large, or more precisely, we can neglect quantities
of an order of smallness O(1/R) and higher.

There are four arbitrary quantities U, V, X, and Y. In order to
obtain a system of equations depending on a single parameter from
(1.1), we subject these quantities to two variations of three con-
ditions:

UXx XV
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R X XV
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As is known, conditions (1.2) lead the system of equations to
a system of equations depending on the Reynolds number R in the
vicinity of the boundary layer, and the conditions (1.8) in the
region of the external flow.

In system (1.1), we shall neglect the quantities which are of the
order of smallness O(1/R) or more, both under conditions (1.2) and

(1.9).

Further, we impose a second constraintg > dv/dt, where g
is the acceleration of gravity. This constraint yields an approxi-
mation of shallow-water theory. Shallow-water theory follows from
the assumption that the component of the acceleration of a particle
along the y-axis has an insignificant influence on the pressure [2].
Then, in the case of a heavy fluid and an inclined rectilinear bottom,
according to system (1.1), we can write the system of equations in
dimensional form:
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Here o is the acute angle between the y axis and the direction
of the force of gravity.

Let the free surface be given by the expression y =h(x, t). From
the second equation of system (1.4) and the condition of constancy
of the pressure on the free surface, we obtain
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Then, (1.4) takes the form
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Thus, the system of equations for the flow as a whole, under
these constraints, has the form of a system of equations of boundary
layer theory.

§2. TURBULENT FLOW

The equations of a turbulent boundary layer are known [1, 3]. It
is not difficult to write them for a heavy fluid and an inclined
bottom.

It was established in $1 that there is a definite relationship
between the forms of the systems of equations of the boundary layer
and the flow as a whole, namely: the system of equations describing
the motion of a fluid over the region as a whole has the form of a
system of equations of the boundary layer, We shall assume that
this property of invariance of the forms of the system of equations
of laminar boundary layer theory is also satisfied in the case of a
turbulent flow. Then, for a turbulent open flow, we have the
equations
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Here 7 is the friction stress.
The boundary conditions on the free surface are

Oh | 0t + u®dk | 8z = »° (kinematic), T = 0 (dynamic). (2.2)

Here u® = u (¢, 2, k), 2° = v {t, z, B).



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS

The houndary conditions on the fixed boundary (on the bottom)
are
u=0, =20

when y = 0. 2.3)

§3. LAW OF RESISTANCE FOR UNSTEADY MOTION OF AN OFEN
FLOW

We shall represent the ratio of the friction suess to the friction
stress on the fixed boundary (on the bottom) in the form of a polynomial:

-

Here the coefficients by are determined from (2,1)-(2.3). We
shall limit ourselves to the first three terms of the polynomial. we
determine the coefficients by, by, and b; from the following con-
ditions,
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On the free surface
T/ % = 0 whenn = {.
Then we have

T/Ty=14+An— 1 +40 (O (3.1)

On the other hand, the friction stress for a turbulent flow can be
written in the form

T/p=¢8du/dy.
Thus, we obtain the differential equation for the velocity

pedu /o = 1k [1 + 4n — (1 + A)n?]. (8.2)

For small values of y the Al'tshul- Hinze formula (4, 5] is valid,
i e.,

8 =auy, ue="V[%l/p. (3.3)
Here o is the universal constant, u* is the dynamic velocity,

We take & = cu*f(y) for any y. We shall seek the function f(y),
following the Satkevich method, so that in case of uniform motion
we obtain the logarithmic velocity profile, which corresponds

better to the hydrometric data than others which have been proposed.
Then it is not difficult to obtain

FW =y —n. (3.4)
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We note that with uniform motion A = ~1. Taking ry/p =u?.
*sign w and (3. 4) into consideration, we obtain from (3. 2}
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Here C(1, x) is ar arbitrary function. The function C(1, x) 1s
determined from the condition that u = Su* when 5 = k/h, where
k is the average height of the roughness effect, and 8 is the universal
constant [4]}. Integrating (3.5) with respect to n from 0 to 1 and
assuming that k/h < 1/2, we obtain

w
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From this, determining A = 0 from the relation %,/ p = A [w |w,

we obtain
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If we take the linear relation (3.3), which is valid, generally
speaking, for small y, as the function f(y), we shall also take
account of molecular viscosity, that is, we represent the stress

in the form [4]
T/p=(v-+e)du/dy.

In this case, taking quh/v>> A, k/h <€ {, we obtain the
expression for ¥4 in the following form:

(3.6)
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